Circuit Lower Bounds, Help Functions, and the Remote Point Problem

V Arvind and Srikanth Srinivasan

The Institute of Mathematical Sciences, Chennai, India.

January 7, 2010
Outline

1 Boolean circuits and the Help Functions problem
 - The Help functions problem
 - An application to standard questions
 - The Remote Point Problem (RPP)
 - The connection to the RPP

2 Algebraic Branching Programs with Help polynomials
 - Noncommutative Algebraic Branching Programs
 - Towards explicit lower bounds
 - Results

3 Summary
Outline

1. Boolean circuits and the Help Functions problem
 - The Help functions problem
 - An application to standard questions
 - The Remote Point Problem (RPP)
 - The connection to the RPP

2. Algebraic Branching Programs with Help polynomials
 - Noncommutative Algebraic Branching Programs
 - Towards explicit lower bounds
 - Results

3. Summary
Boolean circuits

- **Set of variables**
 \[X = \{x_1, x_2, \ldots, x_n\}. \]

- **Directed acyclic graph (DAG)** with labels from
 \[X \cup \overline{X} \cup \{\land, \lor\} \cup \{0, 1\}. \]

- **Computes a function**
 \[f : \{0, 1\}^n \to \{0, 1\}. \]
Boolean circuits – parameters

- Size of a circuit – number of vertices.
- Depth of a circuit – The length of the longest path in the circuit.
- Circuits of interest: Constant depth circuits of small size.

\[(\overline{x_1} \lor x_2) \land (x_2 \lor x_3)\]
Boolean circuit lower bounds

- Notation: \(\text{Size}(s(n)) \) – families of functions
 \(\{f_n : \{0, 1\}^n \rightarrow \{0, 1\}\}_{n \in \mathbb{N}} \) that can be computed by circuits of size \(s(n) \). Similarly \(\text{SizeDepth}(s(n), d(n)) \).

- \(\text{AC}^0 = \text{SizeDepth}(n^{O(1)}, O(1)) \).

- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.

- Current status: \(\text{EXP} \not\subseteq \text{Size}(n^c) \) for any fixed \(c > 0 \).
Boolean circuit lower bounds

- Notation: $\text{Size}(s(n))$ – families of functions
 \(\{f_n : \{0,1\}^n \to \{0,1\}\}_{n \in \mathbb{N}} \) that can be computed by circuits of size $s(n)$. Similarly $\text{SizeDepth}(s(n), d(n))$.

- $\text{AC}^0 = \text{SizeDepth}(n^{O(1)}, O(1))$.

- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.

- Current status: $\text{EXP} \nsubseteq \text{Size}(n^c)$ for any fixed $c > 0$.
Boolean circuit lower bounds

- Notation: $\text{Size}(s(n))$ – families of functions $\{f_n : \{0,1\}^n \to \{0,1\}\}_{n \in \mathbb{N}}$ that can be computed by circuits of size $s(n)$. Similarly $\text{SizeDepth}(s(n), d(n))$.

- $\text{AC}^0 = \text{SizeDepth}(n^{O(1)}, O(1))$.

- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.

- Current status: $\text{EXP} \not\subset \text{Size}(n^c)$ for any fixed $c > 0$.
Boolean circuit lower bounds

- Notation: Size$(s(n))$ – families of functions $\{f_n : \{0,1\}^n \rightarrow \{0,1\}\}_{n \in \mathbb{N}}$ that can be computed by circuits of size $s(n)$. Similarly SizeDepth$(s(n), d(n))$.

- $\text{AC}^0 = \text{SizeDepth}(n^{O(1)}, O(1))$.

- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.

- Current status: $\text{EXP} \not\subseteq \text{Size}(n^c)$ for any fixed $c > 0$.

Srikanth Srinivasan (IMSc)
Better lower bounds for restricted classes of circuits.

- Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^{\Omega(1)}}$ lower bound for CLIQUE.
- Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity $\not\in$ SizeDepth($2^{n^{\Omega(1)}}, O(1)$).
- Constant-depth circuits with Mod$_p$ gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...

Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod$_m$ gates (with m composite)?
Boolean circuit lower bounds (contd.)

- Better lower bounds for restricted classes of circuits.
 - Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^{\Omega(1)}}$ lower bound for CLIQUE.
 - Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): $\text{Parity} \notin \text{SizeDepth}(2^{n^{\Omega(1)}}, O(1))$.
 - Constant-depth circuits with Mod_p gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...

- Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod_m gates (with m composite)?
Better lower bounds for restricted classes of circuits.

- Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^{\Omega(1)}}$ lower bound for CLIQUE.
- Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity $\not\in \text{SizeDepth}(2^{n^{\Omega(1)}}, O(1))$.
- Constant-depth circuits with Mod$_p$ gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...

Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod$_m$ gates (with m composite)?
Better lower bounds for restricted classes of circuits.

- Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^\Omega(1)}$ lower bound for CLIQUE.

- Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): \(\text{Parity} \notin \text{SizeDepth}(2^{n^\Omega(1)}, O(1))\).

- Constant-depth circuits with \(\text{Mod}_p\) gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...

Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with \(\text{Mod}_m\) gates (with \(m\) composite)?
Boolean circuit lower bounds (contd.)

- Better lower bounds for restricted classes of circuits.
 - Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^{\Omega(1)}}$ lower bound for CLIQUE.
 - Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): \(\text{Parity} \notin \text{SizeDepth}(2^{n^{\Omega(1)}}, O(1)) \).
 - Constant-depth circuits with Mod\(_p\) gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...

- Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod\(_m\) gates (with \(m \) composite)?
The Help functions problem

- Fix $h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\} \ (m \approx n^{O(1)} \text{ or } 2^{(\log n)^{O(1)}})$.
- What can constant-depth circuits do when given the ability to compute $H = \{h_1, h_2, \ldots, h_m\}$ (on the given input) for “free”?
- Example: Consider constant-depth boolean circuits that, along with x_1, x_2, \ldots, x_n, are also given $\bigoplus_{i=1}^n x_i$ as input. Can they compute $\bigoplus_{i \leq n/2} x_i$?
The Help functions problem

- Fix \(h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\} \) (\(m \approx n^{O(1)} \) or \(2^{(\log n)^{O(1)}} \)).
- What can constant-depth circuits do when given the ability to compute \(H = \{ h_1, h_2, \ldots, h_m \} \) (on the given input) for “free”?
 - Example: Consider constant-depth boolean circuits that, along with \(x_1, x_2, \ldots, x_n \), are also given \(\bigoplus_{i=1}^{n} x_i \) as input. Can they compute \(\bigoplus_{i \leq n/2} x_i \)?
The Help functions problem

- Fix $h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\}$ ($m \approx n^{O(1)}$ or $2^{(\log n)^{O(1)}}$).
- What can constant-depth circuits do when given the ability to compute $H = \{h_1, h_2, \ldots, h_m\}$ (on the given input) for “free”?
- Example: Consider constant-depth boolean circuits that, along with x_1, x_2, \ldots, x_n, are also given $\bigoplus_{i=1}^{n} x_i$ as input. Can they compute $\bigoplus_{i \leq n/2} x_i$?
Boolean circuits and the Help Functions problem

The Help functions problem

- Fix \(h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\} \) (\(m \approx n^{O(1)} \) or \(2^{(\log n)^{O(1)}} \)).

- What can constant-depth circuits do when given the ability to compute \(H = \{h_1, h_2, \ldots, h_m\} \) (on the given input) for “free”?

- Example: Consider constant-depth boolean circuits that, along with \(x_1, x_2, \ldots, x_n \), are also given \(\bigoplus_{i=1}^{n} x_i \) as input. Can they compute \(\bigoplus_{i \leq n/2} x_i \)?
The Help functions problem (contd.)

SizeDepth$_H(s, d)$ - functions computable by circuits of size s and depth d that take functions from H as input.
The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.
- The \((m(n), s(n), d)\)-Help function problem:
 - **INPUT**: A collection of boolean functions \(H = \{h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\}\}\).
 - **QUESTION**: Find a boolean function \(F : \{0, 1\}^n \rightarrow \{0, 1\}\) such that \(F \not\in \text{SizeDepth}_H(s, d)\).
- Interesting for \(d = O(1)\), \(m = n^{O(1)}\) or \(2^{(\log n)^{O(1)}}\), and \(s = 2^{(\log n)^a}\) or \(2^{n^{O(1)}}\).
The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.
- The \((m(n), s(n), d)\)-Help function problem:
 - INPUT: A collection of boolean functions \(H = \{h_1, h_2, \ldots, h_m : \{0,1\}^n \rightarrow \{0,1\}\}\).
 - QUESTION: Find a boolean function \(F : \{0,1\}^n \rightarrow \{0,1\}\) such that \(F \not\in \text{SizeDepth}_H(s, d)\).
- Interesting for \(d = O(1), m = n^{O(1)}\) or \(2^{(\log n)^{O(1)}}\), and \(s = 2^{(\log n)^a}\) or \(2^{n^{O(1)}}\).
The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.

- The \((m(n), s(n), d)\)-Help function problem:
 - INPUT: A collection of boolean functions
 \[H = \{ h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\} \} \]
 - QUESTION: Find a boolean function \(F : \{0, 1\}^n \rightarrow \{0, 1\} \) such that
 \(F \not\in \text{SizeDepth}_H(s, d) \).

- Interesting for \(d = O(1) \), \(m = n^{O(1)} \) or \(2^{(\log n)^{O(1)}} \), and \(s = 2^{(\log n)^a} \) or \(2^{n^{O(1)}} \).
The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.
- The \((m(n), s(n), d)\)-Help function problem:
 - INPUT: A collection of boolean functions
 \[H = \{ h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\} \}. \]
 - QUESTION: Find a boolean function \(F : \{0, 1\}^n \rightarrow \{0, 1\} \) such that \(F \not\in \text{SizeDepth}_H(s, d) \).

Interesting for \(d = O(1) \), \(m = n^{O(1)} \) or \(2^{(\log n)^{O(1)}} \), and \(s = 2^{(\log n)^a} \) or \(2^{n^{O(1)}} \).
The Help functions problem: another way of extending known circuit lower bounds.

The \((m(n), s(n), d)\)-Help function problem:

- **INPUT:** A collection of boolean functions
 \[H = \{ h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\}\}. \]
- **QUESTION:** Find a boolean function \(F : \{0, 1\}^n \rightarrow \{0, 1\} \) such that \(F \not\in \text{SizeDepth}_H(s, d) \).

Interesting for \(d = O(1) \), \(m = n^{O(1)} \) or \(2^{(\log n)^{O(1)}} \), and \(s = 2^{(\log n)^a} \) or \(2^n^{\Omega(1)} \).
Previous work

- Cai proves “almost-explicit” lower bounds when
 \[H = \{x_1, \ldots, x_n\} \cup \{h_1, h_2, \ldots, h_k\}, \text{ and } k \leq n^{1/5 - \varepsilon}. \]
- Lokam: connections to problems in communication complexity.
Previous work

- Cai proves “almost-explicit” lower bounds when
 \[H = \{x_1, \ldots, x_n\} \cup \{h_1, h_2, \ldots, h_k\}, \text{ and } k \leq n^{1/5-\varepsilon}. \]
- Lokam: connections to problems in communication complexity.
Previous work

- Cai proves “almost-explicit” lower bounds when
 \[H = \{x_1, \ldots, x_n\} \cup \{h_1, h_2, \ldots, h_k\}, \text{ and } k \leq n^{1/5-\varepsilon}. \]
- Lokam: connections to problems in communication complexity.
An application to standard questions

- Suspected: $\text{EXP} \not\subseteq \text{Size}(n^{O(1)})$.
- Weaker statement: EXP does not polynomial-time many-one reduce to $\text{SizeDepth}(n^{O(1)}, O(1))$ (a.k.a. AC^0).
- To prove a lower bound, we want an $L \in \text{EXP}$ such that L does not polynomial-time reduce to $\text{SizeDepth}(n^{O(1)}, O(1))$.
- Define $L(x)$ by diagonalization. Defining $L_n : \{0,1\}^n \rightarrow \{0,1\}$:
An application to standard questions

- Suspected: \(\text{EXP} \not\subseteq \text{Size}(n^{O(1)}) \).
- Weaker statement: EXP does not polynomial-time many-one reduce to \(\text{SizeDepth}(n^{O(1)}, O(1)) \) (a.k.a. AC\(^0\)).
- To prove a lower bound, we want an \(L \in \text{EXP} \) such that \(L \) does not polynomial-time reduce to \(\text{SizeDepth}(n^{O(1)}, O(1)) \).
- Define \(L(x) \) by diagonalization. Defining \(L_n : \{0, 1\}^n \rightarrow \{0, 1\} \):
An application to standard questions

- Suspected: \(\text{EXP} \not\subseteq \text{Size}(n^{O(1)}) \).
- Weaker statement: \(\text{EXP} \) does not polynomial-time many-one reduce to \(\text{SizeDepth}(n^{O(1)}, O(1)) \) (a.k.a. \(\text{AC}^0 \)).
- To prove a lower bound, we want an \(L \in \text{EXP} \) such that \(L \) does not polynomial-time reduce to \(\text{SizeDepth}(n^{O(1)}, O(1)) \).
- Define \(L(x) \) by diagonalization. Defining \(L_n : \{0,1\}^n \rightarrow \{0,1\} \):
An application to standard questions

- Suspected: $\text{EXP} \not\subseteq \text{Size}(n^{O(1)})$.
- Weaker statement: EXP does not polynomial-time many-one reduce to $\text{SizeDepth}(n^{O(1)}, O(1))$ (a.k.a. AC^0).
- To prove a lower bound, we want an $L \in \text{EXP}$ such that L does not polynomial-time reduce to $\text{SizeDepth}(n^{O(1)}, O(1))$.
- Define $L(x)$ by diagonalization. Defining $L_n : \{0, 1\}^n \rightarrow \{0, 1\}$:

 R_1
 R_2
 R_3

 \vdots

 x

 $|x| = n$

 R_n

 \vdots
An application to standard questions

- Suspected: \(\text{EXP} \not\subseteq \text{Size}(n^{O(1)}) \).
- Weaker statement: \(\text{EXP} \) does not polynomial-time many-one reduce to \(\text{SizeDepth}(n^{O(1)}, O(1)) \) (a.k.a. \(\text{AC}^0 \)).
- To prove a lower bound, we want an \(L \in \text{EXP} \) such that \(L \) does not polynomial-time reduce to \(\text{SizeDepth}(n^{O(1)}, O(1)) \).
- Define \(L(x) \) by diagonalization. Defining \(L_n : \{0, 1\}^n \rightarrow \{0, 1\} \):

\[
\begin{array}{c}
R_1 \\
R_2 \\
R_3 \\
\vdots \\
R_n \\
\end{array}
\]

\[
\begin{array}{c}
x \\
| x | = n \\
\end{array}
\rightarrow
\begin{array}{c}
R_n \\
\end{array}
\rightarrow
\begin{array}{c}
C \\
\vdots \\
R_n(x) \\
| R_n(x) | = m \\
\end{array}
\]
An application to standard questions

- Suspected: $\text{EXP} \not\subseteq \text{Size}(n^{O(1)})$.
- Weaker statement: EXP does not polynomial-time many-one reduce to $\text{SizeDepth}(n^{O(1)}, O(1))$ (a.k.a. AC^0).
- To prove a lower bound, we want an $L \in \text{EXP}$ such that L does not polynomial-time reduce to $\text{SizeDepth}(n^{O(1)}, O(1))$.
- Define $L(x)$ by diagonalization. Defining $L_n : \{0, 1\}^n \to \{0, 1\}$:

$$
\begin{array}{c}
R_1 \\
R_2 \\
R_3 \\
\vdots \\
\end{array}
\quad
\begin{array}{c}
C \\
\end{array}
\quad
\begin{array}{c}
R_n \\
h_1(x) \\
h_2(x) \\
\vdots \\
h_m(x) \\
\end{array}
$$
Our observation

A solution to the Help Function problem (for constant-depth circuits) would follow from a “good” solution to the Remote Point Problem.
Define the \((k(N), r(N))\)-Remote Point Problem (RPP) as follows:

- **INPUT:** A basis for a subspace \(V\) of \(\mathbb{F}_2^N\) of dimension at most \(k = k(N)\).
- **SOLUTION:** A vector \(u \in \mathbb{F}_2^N\) such that \(\Delta(u, v) \geq r(N)\) for all \(v \in V\).

Here, \(\Delta(x, y)\) is the Hamming distance between \(x\) and \(y\): that is,
\[| \{i \in [n] \mid x_i \neq y_i \} |.\]
Define the \((k(N), r(N))\)-Remote Point Problem (RPP) as follows:

- **INPUT:** A basis for a subspace \(V\) of \(\mathbb{F}_2^N\) of dimension at most \(k = k(N)\).
- **SOLUTION:** A vector \(u \in \mathbb{F}_2^N\) such that \(\Delta(u, v) \geq r(N)\) for all \(v \in V\).

Here, \(\Delta(x, y)\) is the Hamming distance between \(x\) and \(y\): that is, \(|\{i \in [n] \mid x_i \neq y_i\}|\).
Define the \((k(N), r(N))-\text{Remote Point Problem (RPP)}\) as follows:

- **INPUT:** A basis for a subspace \(V\) of \(\mathbb{F}_2^N\) of dimension at most \(k = k(N)\).
- **SOLUTION:** A vector \(u \in \mathbb{F}_2^N\) such that \(\Delta(u, v) \geq r(N)\) for all \(v \in V\).

Here, \(\Delta(x, y)\) is the Hamming distance between \(x\) and \(y\): that is, \(|\{i \in [n] \mid x_i \neq y_i\}|\).
The Remote Point Problem (RPP)

- Define the \((k(N), r(N))-\text{Remote Point Problem (RPP)}\) as follows:
 - **INPUT**: A basis for a subspace \(V\) of \(\mathbb{F}_2^N\) of dimension at most \(k = k(N)\).
 - **SOLUTION**: A vector \(u \in \mathbb{F}_2^N\) such that \(\Delta(u, v) \geq r(N)\) for all \(v \in V\).

 Here, \(\Delta(x, y)\) is the Hamming distance between \(x\) and \(y\): that is,
 \[|\{i \in [n] \mid x_i \neq y_i\}|.\]
Define the \((k(N), r(N))\)-Remote Point Problem (RPP) as follows:

- **INPUT**: A basis for a subspace \(V\) of \(\mathbb{F}_2^N\) of dimension at most \(k = k(N)\).
- **SOLUTION**: A vector \(u \in \mathbb{F}_2^N\) such that \(\Delta(u, v) \geq r(N)\) for all \(v \in V\).

Here, \(\Delta(x, y)\) is the Hamming distance between \(x\) and \(y\): that is, \(| \{i \in [n] | x_i \neq y_i \} |\).
The Remote Point Problem (RPP)

Define the \((k(N), r(N))\)-Remote Point Problem (RPP) as follows:

- **INPUT:** A basis for a subspace \(V\) of \(\mathbb{F}_2^N\) of dimension at most \(k = k(N)\).
- **SOLUTION:** A vector \(u \in \mathbb{F}_2^N\) such that \(\Delta(u, v) \geq r(N)\) for all \(v \in V\).

Here, \(\Delta(x, y)\) is the Hamming distance between \(x\) and \(y\): that is, \(|\{i \in [n] \mid x_i \neq y_i\}|\).
Motivation and previous work

- An interesting “restriction” of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: \(k(N) = N/10, r(N) = N/10 \). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The \((k, N^{\log_k k})\)-RPP has a polynomial-time algorithm for \(k \leq N/2 \).
Motivation and previous work

- An interesting “restriction” of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: \((k(N) = N/10, r(N) = N/10)\). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon–Panigrahy–Yekhanin): The \((k, N\frac{\log k}{k})\)-RPP has a polynomial-time algorithm for \(k \leq N/2\).
Motivation and previous work

- An interesting “restriction” of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: \(k(N) = N/10, r(N) = N/10 \). Random point is a solution w.h.p. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The \((k, N^{\log k}/k) \)-RPP has a polynomial-time algorithm for \(k \leq N/2 \).
Motivation and previous work

- An interesting “restriction” of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: \((k(N) = N/10, r(N) = N/10)\). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahay-Yekhanin): The \((k, N^{\log \frac{k}{k}})\)-RPP has a polynomial-time algorithm for \(k \leq N/2\).
Motivation and previous work

- An interesting “restriction” of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: \((k(N) = N/10, r(N) = N/10) \). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The \((k, N \log \frac{k}{k}) \)-RPP has a polynomial-time algorithm for \(k \leq N/2 \).
Motivation and previous work

- An interesting “restriction” of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: \((k(N) = N/10, r(N) = N/10)\). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The \((k, N^{\log k / k})\)-RPP has a polynomial-time algorithm for \(k \leq N/2\).
The connection to the Help functions problem

- The \((m(n), s(n), d)\)-Help function problem:
 - INPUT: A collection of boolean functions
 \(H = \{ h_1, h_2, \ldots, h_m : \{0,1\}^n \rightarrow \{0,1\} \}\).
 - QUESTION: Find a boolean function \(F : \{0,1\}^n \rightarrow \{0,1\}\) such that \(F \not\in \text{SizeDepth}_H(s, d)\).

- \(C\) - small constant-depth boolean circuit with \(m\) inputs.

- Using low-degree polynomial approximations to \(AC^0\) (Razborov, Smolensky, Tarui), there is a polynomial \(p_0\) of small degree (at most \(\ell = \log^{O(1)}(m)\)) such that,

\[
\Pr_{x \sim \{0,1\}^n} [p_0(h_1(x), \ldots, h_m(x)) = C(h_1(x), \ldots, h_m(x))] > 1 - \varepsilon
\]
The connection to the Help functions problem

- The \((m(n), s(n), d)\)-Help function problem:
 - INPUT: A collection of boolean functions
 \[H = \{ h_1, h_2, \ldots, h_m : \{0, 1\}^n \rightarrow \{0, 1\} \}. \]
 - QUESTION: Find a boolean function \(F : \{0, 1\}^n \rightarrow \{0, 1\}\) such that \(F \notin \text{SizeDepth}_H(s, d)\).

- \(C\) - small constant-depth boolean circuit with \(m\) inputs.

- Using low-degree polynomial approximations to \(\text{AC}^0\) (Razborov, Smolensky, Tarui), there is a polynomial \(p_0\) of small degree (at most \(\ell = \log^{O(1)}(m)\)) such that,
 \[
 \Pr_{x \sim \{0, 1\}^n} \left[p_0(h_1(x), \ldots, h_m(x)) = C(h_1(x), \ldots, h_m(x)) \right] > 1 - \varepsilon
 \]
The connection to the Help functions problem (contd.)

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & \cdots & \cdots & 0 & 1 & 0 \\
\end{array}
\]

\[C(h_1(x), \ldots, h_m(x))\]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & \cdots & \cdots & 1 & 1 & 0 \\
\end{array}
\]

\[p_0(h_1(x), \ldots, h_m(x))\]

\[
\text{Hamming distance} < \varepsilon 2^n.
\]

\[N = 2^n. \text{ Let } V \text{ be the subspace of } \mathbb{F}_2^N \text{ of all degree } \leq \ell \text{ polynomials in } h_1, h_2, \ldots, h_m.\]

\[\text{Any function } F \text{ such that } \Delta(F, V) \geq \varepsilon N \text{ cannot be computed by a small constant-depth circuit using } h_1, h_2, \ldots, h_m.\]

\[\text{An } (m^\ell, \varepsilon N)\text{-solution to the RPP would give such a function.}\]
The connection to the Help functions problem (contd.)

\[C(h_1(x), \ldots, h_m(x)) \]

Hamming distance \(< \varepsilon 2^n \).

\[p_0(h_1(x), \ldots, h_m(x)) \]

- \(N = 2^n \). Let \(V \) be the subspace of \(\mathbb{F}_2^N \) of all degree \(\leq \ell \) polynomials in \(h_1, h_2, \ldots, h_m \).
- Any function \(F \) such that \(\Delta(F, V) \geq \varepsilon N \) cannot be computed by a small constant-depth circuit using \(h_1, h_2, \ldots, h_m \).
- An \((m^\ell, \varepsilon N) \)-solution to the RPP would give such a function.
The connection to the Help functions problem (contd.)

\[
\begin{array}{cccccc}
0 & 1 & 0 & 0 & 1 & \cdots & 0 & 1 & 0 \\
\end{array}
\]

\[C(h_1(x), \ldots, h_m(x))\]

\[
\begin{array}{cccccc}
0 & 1 & 0 & 0 & 1 & \cdots & 0 & 1 & 0 \\
\end{array}
\]

Hamming distance < \(\varepsilon 2^n\).

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & \cdots & 1 & 1 & 0 \\
\end{array}
\]

\[p_0(h_1(x), \ldots, h_m(x))\]

- \(N = 2^n\). Let \(V\) be the subspace of \(\mathbb{F}_2^N\) of all degree \(\leq \ell\) polynomials in \(h_1, h_2, \ldots, h_m\).
- Any function \(F\) such that \(\Delta(F, V) \geq \varepsilon N\) cannot be computed by a small constant-depth circuit using \(h_1, h_2, \ldots, h_m\).
- An \((m^\ell, \varepsilon N)\)-solution to the RPP would give such a function.
The connection to the Help functions problem (contd.)

\[
\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & \cdots & 0 & 1 & 0 \\
\end{array}
\]

\[C(h_1(x), \ldots, h_m(x))\]

Hamming distance \(<\varepsilon 2^n\).

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 1 & \cdots & 1 & 1 & 0 \\
\end{array}
\]

\[p_0(h_1(x), \ldots, h_m(x))\]

- \(N = 2^n\). Let \(V\) be the subspace of \(\mathbb{F}_2^N\) of all degree \(\leq \ell\) polynomials in \(h_1, h_2, \ldots, h_m\).

- Any function \(F\) such that \(\Delta(F, V) \geq \varepsilon N\) cannot be computed by a small constant-depth circuit using \(h_1, h_2, \ldots, h_m\).

- An \((m^\ell, \varepsilon N)\)-solution to the RPP would give such a function.
Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
 - Not really. The best solution currently (Alon et. al.) is a \((k, N\frac{\log k}{k})\)-solution. Need a \((k, N\frac{1}{k^{o(1)}})\)-solution.
 - However, interesting that a restriction of the rigidity question already implies some nontrivial lower bounds.
 - Also, in the algebraic setting, this point of view does give some non-obvious results.
Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a $(k, N^{\log \frac{k}{k}})$-solution. Need a $(k, N^{\frac{1}{k^{o(1)}}})$-solution.
- However, interesting that a restriction of the rigidity question already implies some nontrivial lower bounds.
- Also, in the algebraic setting, this point of view does give some non-obvious results.
Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?

- Not really. The best solution currently (Alon et. al.) is a \((k, N^{\log k k})\)-solution. Need a \((k, N^{1/k^{o(1)}})\)-solution.

- However, interesting that a restriction of the rigidity question already implies some nontrivial lower bounds.

- Also, in the algebraic setting, this point of view does give some non-obvious results.
Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a \((k, N^{\log k \over k})\)-solution. Need a \((k, N^{1 \over k^{o(1)}})\)-solution.
- However, interesting that a \textit{restriction} of the rigidity question already implies some nontrivial lower bounds.
- Also, in the \textit{algebraic} setting, this point of view does give some non-obvious results.
Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a \((k, N^{\log \frac{k}{k}})\)-solution. Need a \((k, N^{\frac{1}{k^{o(1)}}})\)-solution.
- However, interesting that a \textit{restriction} of the rigidity question already implies some nontrivial lower bounds.
- Also, in the \textit{algebraic} setting, this point of view does give some non-obvious results.
Outline

1 Boolean circuits and the Help Functions problem
 • The Help functions problem
 • An application to standard questions
 • The Remote Point Problem (RPP)
 • The connection to the RPP

2 Algebraic Branching Programs with Help polynomials
 • Noncommutative Algebraic Branching Programs
 • Towards explicit lower bounds
 • Results

3 Summary
Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X = \{x_1, x_2, \ldots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1 x_2 \neq x_2 x_1$.

The RMP
Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X = \{x_1, x_2, \ldots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1x_2 \neq x_2x_1$.

The RMP

Srikanth Srinivasan (IMSc)
Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X = \{x_1, x_2, \ldots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1 x_2 \neq x_2 x_1$.

\[\ell = \sum_i \alpha_i x_i\]
Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X = \{x_1, x_2, \ldots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1x_2 \neq x_2x_1$.

Field \mathbb{F}. Set of variables $X = \{x_1, x_2, \ldots, x_n\}$.

Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1x_2 \neq x_2x_1$.

The RMP
Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X = \{x_1, x_2, \ldots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1x_2 \neq x_2x_1$.

\[
\ell = \sum_i \alpha_i x_i
\]

\[
f_{\gamma} = \ell_1 \ell_2 \cdots \ell_d
\]

\[
f = \sum_{\gamma \in P_{st}} f_{\gamma}
\]
Properties

- An ABP with \(d \) layers computes homogeneous (degree \(d \)) polynomials in the noncommutative ring \(\mathbb{F}\langle X \rangle \).
- Size of an ABP \(A \): the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of noncommutative polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.
Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X \rangle$.

- Size of an ABP A: the number of vertices in the underlying graph.

- ABPs at least as powerful as arithmetic formulas.

- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of noncommutative polynomials, such as the Determinant, the Permanent, etc.

- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.
Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X \rangle$.
- Size of an ABP A: the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.

- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of noncommutative polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.
Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X \rangle$.
- Size of an ABP A: the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of noncommutative polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.
Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X \rangle$.
- Size of an ABP A: the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of noncommutative polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.
Noncommutative ABPs with help polynomials

- Fix $H = \{h_1, h_2, \ldots, h_m\}$, a set of arbitrary polynomials from the noncommutative ring $\mathbb{F}\langle X \rangle$.

- ABPs with help polynomials H - Same as standard ABPs, except we allow the h_i in the linear forms.

$$l = \sum_i \alpha_i x_i + \sum_j \beta_j h_j$$

- The ABP with help polynomials lower bound question: Given $H = \{h_1, h_2, \ldots, h_m\}$, compute a polynomial F such that F cannot be computed by a small ABP using H.
Noncommutative ABPs with help polynomials

- Fix $H = \{h_1, h_2, \ldots, h_m\}$, a set of arbitrary polynomials from the noncommutative ring $\mathbb{F} \langle X \rangle$.
- ABPs with help polynomials H - Same as standard ABPs, except we allow the h_i in the linear forms.

\[
\ell = \sum_i \alpha_i x_i + \sum_j \beta_j h_j
\]

- The ABP with help polynomials lower bound question: Given $H = \{h_1, h_2, \ldots, h_m\}$, compute a polynomial F such that F cannot be computed by a small ABP using H.
Noncommutative ABPs with help polynomials

- Fix $H = \{ h_1, h_2, \ldots, h_m \}$, a set of arbitrary polynomials from the noncommutative ring $\mathbb{F}\langle X \rangle$.

- ABPs with help polynomials H - Same as standard ABPs, except we allow the h_i in the linear forms.

 \[\ell = \sum_i \alpha_i x_i + \sum_j \beta_j h_j \]

- The ABP with help polynomials lower bound question: Given $H = \{ h_1, h_2, \ldots, h_m \}$, compute a polynomial F such that F cannot be computed by a small ABP using H.
The communication matrix $M_k(f)$

- Fix $f \in \mathbb{F}\langle X \rangle$ homogeneous of degree d.
- $\text{Mon}_\ell(X)$ – monic monomials of degree ℓ.
- $f(m)$ – coefficient of monomial m in f.
- For $0 \leq k \leq d$, the matrix $M_k(f)$ is an $n^k \times n^{d-k}$ matrix over \mathbb{F} such that:
 - The rows are labelled by elements of $\text{Mon}_k(X)$.
 - The columns are labelled by elements of $\text{Mon}_{d-k}(X)$.
 - The (m_1, m_2)th entry is $f(m_1 m_2)$.
The communication matrix $M_k(f)$

- Fix $f \in \mathbb{F}\langle X \rangle$ homogeneous of degree d.
- $\text{Mon}_\ell(X)$ – monic monomials of degree ℓ.
- $f(m)$ – coefficient of monomial m in f.
- For $0 \leq k \leq d$, the matrix $M_k(f)$ is an $n^k \times n^{d-k}$ matrix over \mathbb{F} such that:
 - The rows are labelled by elements of $\text{Mon}_k(X)$.
 - The columns are labelled by elements of $\text{Mon}_{d-k}(X)$.
 - The (m_1, m_2)th entry is $f(m_1m_2)$.
The communication matrix $M_k(f)$

- Fix $f \in \mathbb{F}\langle X \rangle$ homogeneous of degree d.
- $\text{Mon}_\ell(X)$ – monic monomials of degree ℓ.
- $f(m)$ – coefficient of monomial m in f.
- For $0 \leq k \leq d$, the matrix $M_k(f)$ is an $n^k \times n^{d-k}$ matrix over \mathbb{F} such that:
 - The rows are labelled by elements of $\text{Mon}_k(X)$.
 - The columns are labelled by elements of $\text{Mon}_{d-k}(X)$.
 - The (m_1, m_2)th entry is $f(m_1m_2)$.
The communication matrix $M_k(f)$

- Fix $f \in \mathbb{F}\langle X \rangle$ homogeneous of degree d.
- $\text{Mon}_\ell(X)$ – monic monomials of degree ℓ.
- $f(m)$ – coefficient of monomial m in f.
- For $0 \leq k \leq d$, the matrix $M_k(f)$ is an $n^k \times n^{d-k}$ matrix over \mathbb{F} such that:
 - The rows are labelled by elements of $\text{Mon}_k(X)$.
 - The columns are labelled by elements of $\text{Mon}_{d-k}(X)$.
 - The (m_1, m_2)th entry is $f(m_1m_2)$.
The communication matrix $M_k(f)$

\[
\begin{pmatrix}
\text{Mon}_k(X) & \text{Mon}_{d-k}(X) & \cdots & \cdots & \cdots & m_2 & \cdots & \cdots \\
\downarrow & \downarrow & \ddots & \ddots & \ddots & \vdots & \ddots & \ddots \\
m_1 & \cdot & \cdot & \cdot & \cdot & f(m_1m_2) & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \ddots & \ddots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \ddots & \ddots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \ddots & \ddots \\
\end{pmatrix}
\]
The approach to lower bounds

- Say we have a small ABP A computing f using H.
 - Then, $M_{d/2}(f) = M' + M$, where:
 - M' has small rank.
 - $M \in V(H)$, where $V(H)$ is a small dimensional vector space depending only on H.
 - Thus, for an explicit lower bound, it suffices to find M_0 such that $\text{rank}(M_0 - M)$ is large for every $M \in V(H)$. Then, choose $F \in \mathbb{F}\langle X \rangle$ so that:
 $$M_{d/2}(F) = M_0$$
- F cannot be computed by small ABPs using H.
The approach to lower bounds

- Say we have a small ABP A computing f using H.
- Then, $M_{d/2}(f) = M' + M$, where:
 - M' small rank.
 - $M \in V(H)$, where $V(H)$ a small dimensional vector space depending only on H.

Thus, for an explicit lower bound, it suffices to find M_0 such that $	ext{rank}(M_0 - M)$ is large for every $M \in V(H)$. Then, choose $F \in \mathbb{F} \langle X \rangle$ so that:

$$M_{d/2}(F) = M_0$$

- F cannot be computed by small ABPs using H.
The approach to lower bounds

- Say we have a small ABP A computing f using H.
- Then, $M_{d/2}(f) = M' + M$, where:
 - M' small rank.
 - $M \in V(H)$, where $V(H)$ a small dimensional vector space depending only on H.
- Thus, for an explicit lower bound, it suffices to find M_0 such that $\text{rank}(M_0 - M)$ is large for every $M \in V(H)$. Then, choose $F \in \mathbb{F}[X]$ so that:
 $$M_{d/2}(F) = M_0$$
- F cannot be computed by small ABPs using H.

Srikanth Srinivasan (IMSc)

Help functions and RPP

January 7, 2010 25 / 32
The approach to lower bounds

Say we have a small ABP A computing f using H. Then, $M_{d/2}(f) = M' + M$, where:

- M' small rank.
- $M \in V(H)$, where $V(H)$ a small dimensional vector space depending only on H.

Thus, for an explicit lower bound, it suffices to find M_0 such that $\text{rank}(M_0 - M)$ is large for every $M \in V(H)$. Then, choose $F \in \mathbb{F}\langle X \rangle$ so that:

$$M_{d/2}(F) = M_0$$

F cannot be computed by small ABPs using H.
The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text{rank}}(M_1, M_2) = \text{rank}(M_1 - M_2)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
 - INPUT: A collection of matrices $M_1, M_2, \ldots, M_k \in \mathbb{F}^{N \times N}$.
 - SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text{rank}}(M - M') \geq r$ for each $M' \in \text{span}(M_1, M_2, \ldots, M_k)$.
- Easy parameters: The $(k, N/(k+1))$-RMP has an easy solution.
- Interesting parameters: $k = N^2/10$, $r = N/10$. Random point is a solution w.h.p.
The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text{rank}}(M_1, M_2) = \text{rank}(M_1 - M_2)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
 - INPUT: A collection of matrices $M_1, M_2, \ldots, M_k \in \mathbb{F}^{N \times N}$.
 - SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text{rank}}(M - M') \geq r$ for each $M' \in \text{span}(M_1, M_2, \ldots, M_k)$.
- Easy parameters: The $(k, N/(k+1))$-RMP has an easy solution.
- Interesting parameters: $k = N^2/10$, $r = N/10$. Random point is a solution w.h.p.
The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text{rank}}(M_1, M_2) = \text{rank}(M_1 - M_2)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
 - **INPUT**: A collection of matrices $M_1, M_2, \ldots, M_k \in \mathbb{F}^{N \times N}$.
 - **SOLUTION**: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text{rank}}(M - M') \geq r$ for each $M' \in \text{span}(M_1, M_2, \ldots, M_k)$.

- Easy parameters: The $(k, N/(k+1))$-RMP has an easy solution.
- Interesting parameters: $k = N^2/10$, $r = N/10$. Random point is a solution w.h.p.
The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text{rank}}(M_1, M_2) = \text{rank}(M_1 - M_2)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
 - INPUT: A collection of matrices $M_1, M_2, \ldots, M_k \in \mathbb{F}^{N \times N}$.
 - SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text{rank}}(M - M') \geq r$ for each $M' \in \text{span}(M_1, M_2, \ldots, M_k)$.
- Easy parameters: The $(k, N/(k + 1))$-RMP has an easy solution.
- Interesting parameters: $k = N^2/10$, $r = N/10$. Random point is a solution w.h.p..
The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text{rank}}(M_1, M_2) = \text{rank}(M_1 - M_2)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
 - INPUT: A collection of matrices $M_1, M_2, \ldots, M_k \in \mathbb{F}^{N \times N}$.
 - SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text{rank}}(M - M') \geq r$ for each $M' \in \text{span}(M_1, M_2, \ldots, M_k)$.
- Easy parameters: The $(k, N/(k + 1))$-RMP has an easy solution.
- Interesting parameters: $k = N^2/10$, $r = N/10$. Random point is a solution w.h.p.
The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text{rank}}(M_1, M_2) = \text{rank}(M_1 - M_2)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
 - **INPUT**: A collection of matrices $M_1, M_2, \ldots, M_k \in \mathbb{F}^{N \times N}$.
 - **SOLUTION**: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text{rank}}(M - M') \geq r$ for each $M' \in \text{span}(M_1, M_2, \ldots, M_k)$.
- Easy parameters: The $(k, N/(k + 1))$-RMP has an easy solution.
- Interesting parameters: $k = N^2/10$, $r = N/10$. Random point is a solution w.h.p.
Results

Lemma

The $(k, N/(k + 1))$-*RMP can be solved in polynomial time.*

Theorem

There is an explicit lower bound F against ABPs using H if:
- H is not too large.
- H is a set of help polynomials with minimum degree $\geq d(1/2 + \epsilon)$.

Theorem

If the $(k, N/k^{1/2-\epsilon})$-*RMP can be solved in polynomial time, then there is an explicit lower bound F against ABPs using H, for any H that is not too large.
Results

Lemma

The \((k, N/(k+1))\)-RMP can be solved in polynomial time.

Theorem

There is an explicit lower bound \(F\) against ABPs using \(H\) if:

- \(H\) is not too large.
- \(H\) is a set of help polynomials with minimum degree \(\geq d(1/2 + \varepsilon)\).

Theorem

If the \((k, N/k^{1/2-\varepsilon})\)-RMP can be solved in polynomial time, then there is an explicit lower bound \(F\) against ABPs using \(H\), for any \(H\) that is not too large.
Results

Lemma

The \((k, N/(k + 1))\)-RMP can be solved in polynomial time.

Theorem

There is an explicit lower bound \(F\) against ABPs using \(H\) if:

- \(H\) is not too large.
- \(H\) is a set of help polynomials with minimum degree \(\geq d(1/2 + \varepsilon)\).

Theorem

If the \((k, N/k^{1/2-\varepsilon})\)-RMP can be solved in polynomial time, then there is an explicit lower bound \(F\) against ABPs using \(H\), for any \(H\) that is not too large.
Other Results

Following the general proof structure of the result of Alon, Panigrahy, and Yekhanin’s result on the RPP:

Theorem

The \((N, \log N)\)-RMP can be solved in polynomial time, for constant-sized fields.
Outline

1 Boolean circuits and the Help Functions problem
 - The Help functions problem
 - An application to standard questions
 - The Remote Point Problem (RPP)
 - The connection to the RPP

2 Algebraic Branching Programs with Help polynomials
 - Noncommutative Algebraic Branching Programs
 - Towards explicit lower bounds
 - Results

3 Summary
Summary

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth($n^{O(1)}$, $O(1)$).
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.
- The connection yields restricted lower bounds against ABPs using help polynomials.
Summary

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of $\text{SizeDepth}(n^{O(1)}, O(1))$.
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.
- The connection yields restricted lower bounds against ABPs using help polynomials.
Summary

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.

- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth($n^{O(1)}$, $O(1)$).

- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.

- The connection yields restricted lower bounds against ABPs using help polynomials.
Summary

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth($n^{O(1)}$, $O(1)$).
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.
- The connection yields restricted lower bounds against ABPs using help polynomials.
Open questions

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
 - Is there a small H such that $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contains all the parities?
 - If H contains only parities, then does $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.
Open questions

- **Algorithms with better parameters for the RPP and RMP.**

- **Specific cases of the Help functions question:**
 - Is there a small H such that $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contains all the parities?
 - If H contains only parities, then does $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contain the inner-product function?

- **Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.**
Open questions

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
 - Is there a small H such that $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contains all the parities?
 - If H contains only parities, then does $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.
Open questions

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
 - Is there a small H such that $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contains all the parities?
 - If H contains only parities, then does $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.
Open questions

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
 - Is there a small H such that $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contains all the parities?
 - If H contains only parities, then does $\text{SizeDepth}_H(n^{O(1)}, O(1))$ contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.
Thank you