Effectively Polynomial Simulations

Toni Pitassi (U of Toronto)
Rahul Santhanam (U of Edinburgh)
Proof systems

Propositional

Poly time onto fn: \{0,1\}^* → \text{TAUT}
(proofs) (prop. tautologies)

Quantified

Poly time onto fn: \{0,1\}^* → \text{QTAUT}
(proofs) (valid quantified formulae)
Proof Systems and Complexity

• Theorem [Cook-Reckhow]: NP = coNP iff there is a propositional proof system which is \textit{polynomially bounded} (every tautology has a proof of length polynomial in size of tautology)

• PSPACE = NP iff there is a quantified proof system which is polynomially bounded
p-Simulations

• P p-simulates Q if for all tautologies ϕ
 – If ϕ has Q-proofs of size n, then ϕ has P-proofs of size $\text{poly}(n)$

• If P p-simulates Q then proof size lower bounds for P translate to lower bounds for Q

• Extended Frege p-simulates Frege p-simulates Bounded-depth Frege p-simulates Resolution
Effectively p-simulations: Basic Idea

• Relaxed notion of simulation

• P effectively p-simulates Q if
 – ϕ has small proofs in $Q \Rightarrow f(\phi)$ has small proofs in P, where f is poly-time
Effectively p-simulations: Definition

Effectively p-simulation of Q by P

For all ϕ and m, ϕ is a tautology iff $f(<\phi,1^m>)$ is a tautology

If ϕ has Q-proofs of size at most m, then $f(<\phi,1^m>)$ has P-proofs of size at most $\text{poly}(m)$
Effectively p-simulation: Motivation

• When proof systems are used in SAT solvers, natural to allow poly-time preprocessing
• Allows us to
 – Compare proof systems of different kinds, eg. propositional vs quantified
 – Relate several pairs of proof systems not known to be related before
• Useful in studying *automatizability* (efficient proof search)
Automatizability

- “Proof” might not be in P, but in a different proof system. If proof produced is a P-proof, then “strongly automatizable”
Automatizability and Complexity

• Theorem: The following are equivalent
 – Every propositional proof system is automatizable
 – Every quantified proof system is automatizable
 – $P = NP$
Automatizability and Effectively Polynomial Simulation

• Proposition: If P is automatizable and P effectively p-simulates Q, then Q is automatizable

• Proof: Given \(\langle \phi, 1^m \rangle \), automatization procedure for Q runs automatization procedure for P on \(f(\langle \phi, 1^m \rangle) \) and returns the result
Proof Systems: Hilbert-style (Propositional)

• Axioms, rules of deduction, lines of proof are propositional

• Different proof systems depending on what the lines are
 – Clauses: Resolution
 – k-DNFs: k-Res
 – AC^0: Bounded-depth Frege
 – Formulae: Frege
 – Circuits: EF
Proof Systems: Hilbert-style (Quantified)

• Axioms, rules of deduction, lines of proof are quantified Boolean formulae

• Key rule of deduction is *cut* rule (from $A \lor B \rightarrow C$ and $A \rightarrow B \land D$, derive $A \rightarrow D \lor C$)

• Different proof systems depending on type of B

 – B is Σ_i formula: G_i
Proof Systems: Algebraic

- Manipulating systems of polynomial equations: Polynomial Calculus (PC), Nullstellensatz
- Manipulating systems of linear inequalities: Cutting Planes (CP), Lovasz-Schrijver (LS), LS+
p-Simulations: The Map

Key

→ p-simulation

→ No p-simulation

AC0-Frege → k-Res → Res

Res → k-Res

k-Res → Lin Res

Res → Tree Res

Tree Res → Clause Learning

Nullstellensatz → Polynomial Calculus

Polynomial Calculus → Cutting Planes

Cutting Planes → EF

EF → Frege

Frege
Effectively p-simulations: Examples (1)

• Proposition: If A and B are (quasi)automatizable, then each effectively (quasi)p-simulates the other

• Corollary: Nullstellensatz, PC and Tree Resolution effectively (quasi)p-simulate each other

• Theorem [CEI96]: Nullstellensatz does not (quasi)p-simulate PC

• Tree Resolution does not (quasi)p-simulate Nullstellensatz or PC
Effectively p-simulations: Examples (2)

- Linear Resolution: Resolution where one of the resolved clauses is the most recently derived
- Unknown whether Linear Resolution p-simulates Resolution
- Theorem [B-OP03]: Linear Resolution effectively p-simulates Resolution
Effectively p-simulations: Examples (3)

• Clause Learning: Variant of Resolution used extensively in SAT solvers
• Unknown whether Clause Learning p-simulates Resolution
• Theorem [BHPvG08]: Clause Learning effectively p-simulates Resolution
Effectively p-simulations: Examples (4)

• Theorem [ABE02]: Res does not p-simulate k-Res, for any $k \geq 2$

• Theorem [AB04]: Res effectively p-simulates k-Res for any constant k

• Generalization: a proof system can effectively p-simulate any local extension of it
Effectively p-simulations: Examples (5)

• Unknown whether G_i p-simulates G_j, for $j < i$
• Theorem: G_0 effectively p-simulates every quantified proof system S
• Proof idea: Map ϕ to $\text{Refl}_S \rightarrow \phi$, and prove that if ϕ has small proofs in S, then $\text{Refl}_S \rightarrow \phi$ has small proofs in G_0
Lower Bounds on Effectively p-simulations

- If A is automatizable and B is not, then B does not effectively p-simulate A
- Corollary: If Factoring is not in quasi-poly time, then Tree Resolution does not eff. p-sim EF
- But how about if neither A nor B is believed to be automatizable?
Lower Bounds (ctd)

• Theorem: If $\text{NP} \cap \text{coNP} \not\subseteq \text{i.o. P}$, then there are prop. proof systems A and B such that
 – A is not automatizable
 – B is not automatizable
 – A does not effectively p-simulate B

• Analogue of Ladner’s Theorem for proof complexity
Lower Bounds on Restricted Simulations

- Theorem: If Frege does not p-simulate EF, then there is no *symmetric extensional* effectively p-simulation of EF by Frege
- Uses result of [Clote-Kranakis91] about “poly-symmetric” functions
Open Problems

• More examples of effective p-simulations?
• Resolution does not effectively p-simulate EF, under natural assumption?
• Frege does not effectively p-simulate EF, for oblivious p-simulations?