Cryptographic Complexity

&

Computational Intractability

Hemanta Maji | Manoj Prabhakaran | Mike Rosulek
Crypto Means & Goals

- One-Way Functions
- One-Way Permutations
- Trapdoor One-Way Permutations
- OT protocol
- Collision-Resistant Hash Functions
- Zero-Knowledge Proofs
- Encryption
- Signatures
- Homomorphic Encryption
- OT Channel
- Digital Cash
- Secret Communication Channels
- Authenticated Communication Channels
- Mental Poker
- Privacy Preserving Data-Mining
- E-Voting
- Functionalities
- Intractability
Functionalities
Functionalities

- A universe of functionalities: programs for a trusted party
Functionalities

• A universe of functionalities: programs for a trusted party

• Several constituent ideas: Zero-knowledge/simulatability \[^{[GMR85]}\], Ideal/Real paradigm \[^{[GMW87]}\], Relative-Resilience \[^{[B91]}\], ..., Reactive Simulatability \[^{[PW01]}\], UC security \[^{[C01]}\]
Functionalities

- A universe of functionalities: programs for a trusted party
- Several constituent ideas: Zero-knowledge/simulatability \(^{[GMR85]}\), Ideal/Real paradigm \(^{[GMW87]}\), Relative-Resilience \(^{[B91]}\), ..., Reactive Simulatability \(^{[PW01]}\), UC security \(^{[C01]}\)
- Motivates a Cryptographic Complexity Theory
Functionalities

• A universe of functionalities: programs for a trusted party

• Several constituent ideas: Zero-knowledge/simulatability $[^{GMR85}]$, Ideal/Real paradigm $[^{GMW87}]$, Relative-Resilience $[^{B91}]$, ..., Reactive Simulatability $[^{PW01}]$, UC security $[^{C01}]$

• Motivates a Cryptographic Complexity Theory

• Reduction $F \preceq G$: F can be securely realized given G
Functionalities

- A universe of functionalities: programs for a trusted party
- Several constituent ideas: Zero-knowledge/simulatability \([GMR85]\), Ideal/Real paradigm \([GMW87]\), Relative-Resilience \([B91]\), ..., Reactive Simulatability \([PW01]\), UC security \([C01]\)
- Motivates a Cryptographic Complexity Theory
- Reduction \(F \subseteq G\): F can be securely realized given G
- Capturing extent of "cryptographic magic" in F, G
Functionalities

- A universe of functionalities: programs for a trusted party
 - Several constituent ideas: Zero-knowledge/simulatability [GMR85], Ideal/Real paradigm [GMW87], Relative-Resilience [B91], ..., Reactive Simulatability [PW01], UC security [C01]

- Motivates a **Cryptographic Complexity Theory**

- Reduction $F \subseteq G$: F can be securely realized given G
 - Capturing extent of “cryptographic magic” in F, G
 - Strict (to capture fine distinctions), while remaining useful (to allow protocols): statistical (adaptive) UC security reduction
A universe of functionalities: programs for a trusted party

Several constituent ideas: Zero-knowledge/simulatability \[\text{[GMR85]}\], Ideal/Real paradigm \[\text{[GMW87]}\], Relative-Resilience \[\text{[B91]}\], ..., Reactive Simulatability \[\text{[PW01]}\], UC security \[\text{[C01]}\]

Motivates a Cryptographic Complexity Theory

Reduction \(F \subseteq G \): F can be securely realized given G

Capturing extent of "cryptographic magic" in F, G

Strict (to capture fine distinctions), while remaining useful (to allow protocols): statistical (adaptive) UC security reduction

Reductions represent cryptographic goals (cf. algorithmic goals)
Cryptographic Complexity

- complete
- passive trivial
- exchange-like
- exchange
- free
- standalone trivial
- UC trivial
Cryptographic Complexity

- Complexity classes
Cryptographic Complexity

- Complexity classes

- *OT complete
- passive trivial
- exchange-like
- exchange-free
- standalone trivial
- UC trivial

COM
Cryptographic Complexity

- Complexity classes
Cryptographic Complexity

- Complexity classes
- Many results [K88, CK89, K89, K91, K00, KKMO00, ..., PR08, KMQ08, KMQR09, MPR09, MPR10b]
Cryptographic Complexity

- Complexity classes
 - Many results \([K88,CK89,K89,K91,K00,KKMO00,...,PR08,KMQ08,KMQR09,MPR09,MPR10b]\)
 - e.g. “Passive Trivial”
Cryptographic Complexity

- Complexity classes
 - Many results \([K88, CK89, K89, K91, K00, KKMO00, \ldots, PR08, KMQ08, KMQR09, MPR09, MPR10b]\)
 - e.g., “Passive Trivial”
 - \(F_{\text{COM}}\) is complete for PT, but no non-reactive \(F\) is \([MPR09]\)
Cryptographic Complexity

- Complexity classes
 - Many results \([K88,CK89,K89,K91,K00,KKMO00,\ldots,\text{PR08, KMQ08, KMQR09, MPR09, MPR10b]}\]
 - e.g. “Passive Trivial”
 - \(F_{\text{COM}}\) is complete for PT, but no non-reactive \(F\) is \([\text{MPR09]}\]
 - e.g. 3 reasons of non-triviality: hidden influence, commitment, simultaneity

\[\text{UC trivial} \rightarrow \text{standalone trivial} \rightarrow \text{exchange-free} \rightarrow \text{exchange-like} \rightarrow \text{passive trivial} \rightarrow \text{complete} \]

\(*\text{OT complete} \quad *\text{COM}

\[\text{UC trivial} \rightarrow \text{standalone trivial} \rightarrow \text{exchange-free} \rightarrow \text{exchange-like} \rightarrow \text{passive trivial} \rightarrow \text{complete}\]
Cryptographic Complexity

- **Complexity classes**
 - Many results [K88, CK89, K89, K91, K00, KKMO00, ..., PR08, KMQ08, KMQR09, MPR09, MPR10b]
 - e.g. “Passive Trivial”
 - F_{COM} is complete for PT, but no non-reactive F is [MPR09]
 - e.g. 3 reasons of non-triviality: hidden influence, commitment, simultaneity
 - Exchange-Like: essentially $F_{\text{Exch}}^{m \times n}$ [MPR10b]

- OT complete
- Passive trivial
- Exchange-like
- Exchange-free
- Standalone trivial
- UC trivial
Cryptographic Complexity

- Complexity classes
 - Many results [K88,CK89,K89,K91,K00,KKMO00,..., PR08,KMQ08,KMQR09,MPR09,MPR10b]
 - e.g. “Passive Trivial”
 - F_{COM} is complete for PT, but non-reactive F is [MPR09]
 - e.g. 3 reasons of non-triviality: hidden influence, commitment, simultaneity
 - Exchange-Like: essentially $F_{\text{Exch}}^{m \times n}$ [MPR10b]
- Computationally unbounded setting
Intractability Assumptions
Intractability Assumptions

- No satisfactory framework so far
Intractability Assumptions

- No satisfactory framework so far
- We consider here a subset of assumptions as “inherent” to cryptographic goals
Intractability Assumptions

• No satisfactory framework so far

• We consider here a subset of assumptions as “inherent” to cryptographic goals

• Plan: Leverage cryptographic complexity of functionalities to chart the landscape of intractability assumptions
Intractability Assumptions

- No satisfactory framework so far
- We consider here a subset of assumptions as “inherent” to cryptographic goals
 - Plan: Leverage cryptographic complexity of functionalities to chart the landscape of intractability assumptions
 - Universe of assumptions: $\mathcal{F} \subseteq \mathcal{G}$ in the computationally bounded setting
Assumptions: $F \sqsubseteq G$
Assumptions: $F \subseteq G$

- Reductions which are not true in the computationally unbounded setting
Assumptions: $F \subseteq G$

- Reductions which are not true in the computationally unbounded setting
Assumptions: $F \subseteq G$

- Reductions which are not true in the computationally unbounded setting
- Assumption that it holds in the PPT setting
Assumptions: \(F \sqsubseteq G \)

- Reductions which are not true in the computationally unbounded setting
- Assumption that it holds in the PPT setting
- Can consider multiple notions of \(\sqsubseteq \). Here, UC security against active (static) adversaries.
Intractability Assumptions
Intractability Assumptions

- Assumptions: $F \subseteq G$
Intractability Assumptions

- Assumptions: \(F \subseteq G \)
- Maximal assumption(s)?
Intractability Assumptions

• Assumptions: $F \subseteq G$
 • Maximal assumption(s)?
 • Minimal assumption(s)?
Intractability Assumptions

• Assumptions: $F \subseteq G$
• Maximal assumption(s)?
• Minimal assumption(s)?
• How many distinct assumptions?
Intractability Assumptions

• Assumptions: \(F \subseteq G \)
 • Maximal assumption(s)?
 • Minimal assumption(s)?
 • How many distinct assumptions?
• And identify equivalent “traditional” assumptions like OWF
Intractability Assumptions

• Assumptions: $F \subseteq G$
 • Maximal assumption(s)?
 • Minimal assumption(s)?
 • How many distinct assumptions?
• And identify equivalent “traditional” assumptions like OWF
• Contrast with deriving general assumptions to abstract specific algebraic/number-theoretic assumptions
Intractability Assumptions

- Assumptions: $F \subseteq G$
 - Maximal assumption(s)?
 - Minimal assumption(s)?
 - How many distinct assumptions?
- And identify equivalent “traditional” assumptions like OWF
- Contrast with deriving general assumptions to abstract specific algebraic/number-theoretic assumptions
- Many standard general assumptions (like OWP) may not appear in our universe
Results
Results

• Every assumption $F \sqsubseteq G$ (for 2-party F, G) that we classify is equivalent to existence of one-way functions (OWF) or that of semi-honest OT protocols (shOT)
Results

- Every assumption $F \sqsubseteq G$ (for 2-party F, G) that we classify is equivalent to existence of one-way functions (OWF) or that of semi-honest OT protocols (shOT). A protocol for OT that is secure against “semi-honest” adversaries (equivalently, against “stand-alone” adversaries).
Results

• Every assumption $F \leq G$ (for 2-party F, G) that we classify is equivalent to existence of one-way functions (OWF) or that of semi-honest OT protocols (shOT)

• Significance of “Minicrypt” and “Cryptomania”
Results

• Every assumption $F \subseteq G$ (for 2-party F, G) that we classify is equivalent to existence of one-way functions (OWF) or that of semi-honest OT protocols (shOT)

• Significance of “Minicrypt” and “Cryptomania”

• In this work: $F \subseteq G \Rightarrow$ OWF/shOT

A protocol for OT that is secure against “semi-honest” adversaries (equivalently, against “stand-alone” adversaries)
Results

• Every assumption $F \subseteq G$ (for 2-party F, G) that we classify is equivalent to existence of **one-way functions (OWF)** or that of **semi-honest OT protocols (shOT)**.

• Significance of “Minicrypt” and “Cryptomania”

• In this work: $F \subseteq G \Rightarrow$ OWF/shOT

• Other direction from companion work [MPR10b]
Results

• Every assumption $F \sqsubseteq G$ (for 2-party F, G) that we classify is equivalent to existence of one-way functions (OWF) or that of semi-honest OT protocols (shOT).

• Significance of “Minicrypt” and “Cryptomania”

• In this work: $F \sqsubseteq G \Rightarrow$ OWF/shOT

• Other direction from companion work [MPR10b]

 • In particular shOT is the maximal assumption
An Example

- $F_{\text{Exch}} \subseteq F_{\text{Coin}} \Rightarrow \text{shOT}$
An Example

- $F_{\text{Exch}} \subseteq F_{\text{Coin}} \Rightarrow \text{shOT}$

Diagram:

- A node labeled F_{COIN}
- Two nodes labeled Alice and Bob
- Arrows connecting Alice and Bob to F_{COIN}
An Example

- $F_{\text{Exch}} \subseteq F_{\text{Coin}} \Rightarrow \text{shOT}$
An Example

- $F_{\text{Exch}} \sqsubseteq F_{\text{Coin}} \Rightarrow \text{shOT}$

- Basic idea for an shOT protocol:
An Example

- $F_{\text{Exch}} \subseteq F_{\text{Coin}} \Rightarrow \text{shOT}$

- Basic idea for an shOT protocol:
 - Sender runs F_{Exch} protocol (say, as Alice)
An Example

- $F_{\text{Exch}} \sqsubseteq F_{\text{Coin}} \Rightarrow \text{shOT}$

- Basic idea for an shOT protocol:
 - Sender runs F_{Exch} protocol (say, as Alice)
 - Receiver will run either the F_{Exch} protocol (playing F_{Coin} itself), or the simulator for that protocol. Sender cannot distinguish between the two.
An Example

- $F_{\text{Exch}} \sqsubseteq F_{\text{Coin}} \Rightarrow \text{shOT}$

- Basic idea for an shOT protocol:
 - Sender runs F_{Exch} protocol (say, as Alice)
 - Receiver will run either the F_{Exch} protocol (playing F_{Coin} itself), or the simulator for that protocol. Sender cannot distinguish between the two.
An Example

- \(F_{\text{Exch}} \subseteq F_{\text{Coin}} \Rightarrow \text{shOT} \)

Basic idea for an shOT protocol:
- Sender runs \(F_{\text{Exch}} \) protocol (say, as Alice)
- Receiver will run either the \(F_{\text{Exch}} \) protocol (playing \(F_{\text{Coin}} \) itself), or the simulator for that protocol. Sender cannot distinguish between the two.
- Truncate the execution at a random round
An Example

- $F_{\text{Exch}} \subseteq F_{\text{Coin}} \Rightarrow \text{shOT}$
An Example

- \(F_{\text{Exch}} \subseteq F_{\text{Coin}} \Rightarrow \text{shOT} \)

- Can argue: in the \(F_{\text{Exch}} \) protocol, the expected round in the simulation at which simulator for corrupt Alice extracts her input is before Bob learns it in the real execution (or with Alice/Bob reversed). (Uses the fact that \(F_{\text{Coin}} \) cannot be used to communicate.)
An Example

- $F_{\text{Exch}} \subseteq F_{\text{Coin}} \Rightarrow \text{shOT}$

- Can argue: in the F_{Exch} protocol, the expected round in the simulation at which simulator for corrupt Alice extracts her input is before Bob learns it in the real execution (or with Alice/Bob reversed). (Uses the fact that F_{Coin} cannot be used to communicate.)

- So stopping the protocol at a random point gives the simulation an advantage over the honest strategy. Provides a “weak OT” that can then be amplified \cite{DKS99}
shOT

- complete
- passive trivial
- exchange-like
- exchange-free
- standalone trivial
- UC trivial
• For any “exchange-like” functionality G (not trivial), and for any F s.t. $F \subseteq G$ doesn’t hold statistically,
• For any “exchange-like” functionality G (not trivial), and for any F s.t. $F \subseteq G$ doesn’t hold statistically,
For any “exchange-like” functionality \(G \) (not trivial), and for any \(F \) s.t. \(F \sqsubseteq G \) doesn’t hold statistically,
shOT

- For any “exchange-like” functionality G (not trivial), and for any F s.t. $F \subseteq G$ doesn’t hold statistically,
- $F \subseteq G$ is equivalent to shOT

\begin{itemize}
\item \textbf{OT complete}
\item \textbf{passive trivial}
\item \textbf{exchange-like}
\item \textbf{exchange-free}
\item \textbf{standalone trivial}
\item \textbf{UC trivial}
\item \textbf{com}
\item \textbf{exch}
\item \textbf{3X3}
\item \textbf{exch 4X4}
\item \textbf{EXCH 4X4}
\item \textbf{EXCH 3X3}
\item \textbf{n-cc}
\item \textbf{cc}
\end{itemize}
shOT

- For any “exchange-like” functionality G (not trivial), and for any F s.t $F \subseteq G$ doesn’t hold statistically,
- $F \subseteq G$ is equivalent to shOT
shOT

- For any “exchange-like” functionality G (not trivial), and for any F s.t. $F \subseteq G$ doesn’t hold statistically,
- $F \subseteq G$ is equivalent to shOT
shOT

- For any “exchange-like” functionality G (not trivial), and for any F s.t $F \subseteq G$ doesn’t hold statistically,
- $F \subseteq G$ is equivalent to shOT
- Also, if F complete and G passive trivial (not trivial), $F \subseteq G$ is equivalent to shOT
shOT

- For any “exchange-like” functionality G (not trivial), and for any F s.t $F \subseteq G$ doesn’t hold statistically,
- $F \subseteq G$ is equivalent to shOT
- Also, if F complete and G passive trivial (not trivial), $F \subseteq G$ is equivalent to shOT
shOT

- For any “exchange-like” functionality G (not trivial), and for any F s.t $F \subseteq G$ doesn’t hold statistically,
- $F \subseteq G$ is equivalent to shOT
- Also, if F complete and G passive trivial (not trivial), $F \subseteq G$ is equivalent to shOT
- All other reductions among “classified” F, G are implied by OWF (by results in [MPR09, MPR10b])
OWF

* OT
complete

passive trivial

exchange-like

EXCH^{3x3}

* EXCH^{4x4}

* COM

exchange-free

standalone trivial

UC trivial

* n-cc

* cc
• Conjecture: *all* these reductions *imply* OWF (except those that hold statistically)
• Conjecture: *all* these reductions *imply* OWF (except those that hold statistically)

• We validate the conjecture for a large set, using “frontier analysis”
• Conjecture: *all* these reductions *imply* OWF (except those that hold statistically)

• We validate the conjecture for a large set, using “frontier analysis”

• Frontier analysis: appears in [Cl’93]. Reinvented (for other uses) in [MPR09], and used extensively in [MMOPR, MPS]
Frontier Analysis & OWF

Transcript tree

full transcripts
Frontier Analysis & OWF

- Considers frontiers in a protocol’s “transcript tree” where certain properties hold (e.g. some information about an input is revealed)
Frontier Analysis & OWF

- Considers frontiers in a protocol’s “transcript tree” where certain properties hold (e.g. some information about an input is revealed)
Frontier Analysis & OWF

- Considers frontiers in a protocol’s “transcript tree” where certain properties hold (e.g. some information about an input is revealed)
- Can show that certain frontiers must exist
Frontier Analysis & OWF

- Considers frontiers in a protocol’s “transcript tree” where certain properties hold (e.g. some information about an input is revealed)
- Can show that certain frontiers must exist
- Attacks can be launched at the frontiers if they can be detected
Frontier Analysis & OWF

- Considers frontiers in a protocol’s “transcript tree” where certain properties hold (e.g. some information about an input is revealed)
- Can show that certain frontiers must exist
- Attacks can be launched at the frontiers if they can be detected
- Turns out, often, if OWFs don’t exist, then can efficiently detect the frontiers (using characterization of OWF in [IL89])
Future Work
Future Work

• Conjecture: Among 2-party SFE functionalities F, G, all assumptions $F \equiv G$ are equivalent to either OWF or shOT
Future Work

- Conjecture: Among 2-party SFE functionalities F, G, all assumptions $F \sqsubseteq G$ are equivalent to either OWF or shOT.

- *Key-Agreement* is a “distinct” assumption that emerges on considering 3-party functionalities. Question: Are there more?
Future Work

- Conjecture: Among 2-party SFE functionalities F, G, all assumptions $F \leq G$ are equivalent to either OWF or shOT.

- *Key-Agreement* is a “distinct” assumption that emerges on considering 3-party functionalities. Question: Are there more?

In progress: “Intractability Abstractions” to formalize distinct assumptions, generalizing the Impagliazzo-Rudich approach.
Future Work

- Conjecture: Among 2-party SFE functionalities F, G, all assumptions $F \sqsubseteq G$ are equivalent to either OWF or shOT

- Key-Agreement is a “distinct” assumption that emerges on considering 3-party functionalities. Question: Are there more?

- More generally, how about m-party functionalities for $m > 2$?

In progress: “Intractability Abstractions” to formalize distinct assumptions, generalizing the Impagliazzo-Rudich approach
Future Work

• Conjecture: Among 2-party SFE functionalities F, G, all assumptions $F \subseteq G$ are equivalent to either OWF or shOT.

• Key-Agreement is a “distinct” assumption that emerges on considering 3-party functionalities. Question: Are there more?

• More generally, how about m-party functionalities for $m > 2$?

• Even (statistical) cryptographic complexity little understood.

In progress: “Intractability Abstractions” to formalize distinct assumptions, generalizing the Impagliazzo-Rudich approach.
Future Work

- Conjecture: Among 2-party SFE functionalities \(F, G \), all assumptions \(F \sqsubseteq G \) are equivalent to either OWF or shOT.

- *Key-Agreement* is a "distinct" assumption that emerges on considering 3-party functionalities. Question: Are there more?

- More generally, how about \(m \)-party functionalities for \(m > 2 \)?

- Even (statistical) cryptographic complexity little understood.

- Randomized functionalities, fair functionalities, infinite functionalities? (Again, cryptographic complexity little understood.)

In progress: "Intractability Abstractions" to formalize distinct assumptions, generalizing the Impagliazzo-Rudich approach.
Crypto Means & Goals

One-Way Functions
One-Way Permutations
Trapdoor One-Way Permutations
OT protocol
Collision-Resistant Hash Functions
Intractability

Zero-Knowledge Proofs
Encryption
Signatures
Homomorphic Encryption
OT Channel
Digital Cash

Secret Communication Channels
Authenticated Communication Channels
OT Channel
E-Voting
Digital Cash

Mental Poker
Privacy Preserving Data-Mining

Functionalitys

Intractability
Crypto Means & Goals

One-Way Functions
One-Way Permutations
Trapdoor One-Way Permutations
OT protocol
Collision-Resistant Hash Functions

Zero-Knowledge Proofs
Encryption
Signatures
Homomorphic Encryption

Secret Communication Channels
Authenticated Communication Channels
OT Channel
E-Voting
Digital Cash

Intractability
Functionalities

Mental Poker
Privacy Preserving Data-Mining

Crypto Means & Goals

- One-Way Functions
- One-Way Permutations
- Trapdoor One-Way Permutations
- OT protocol
- Collision-Resistant Hash Functions
- Intractability

- Encryption
- Signatures
- Homomorphic Encryption
- Zero-Knowledge Proofs

- OT Channel
- Secret Communication Channels
- Authenticated Communication Channels
- OT Channel
- Digital Cash
- E-Voting
- Mental Poker
- Privacy Preserving Data-Mining

- Functionalities
Crypto Means & Goals

One-Way Functions

Zero-Knowledge Proofs

Encryption

Signatures

Homomorphic Encryption

OT Channel

Digital Cash

Mental Poker

Privacy Preserving Data-Mining

E-Voting

OT protocol

One-Way Permutations

Authenticated Communication Channels

Authenticated Communication Channels

Collision-Resistant Hash Functions

OT Channel

Intractability

 Functionalities

• A Theory of Computational Intractability for Cryptography