Bounding Rationality by Discounting Time

Lance Fortnow
Rahul Santhanam
Plan of the Talk

• Introduction
• The Model
• Results
• Future Directions
Plan of the Talk

- Introduction
- The Model
- Results
- Future Directions
Perfect Rationality

• Perfect rationality in a strategic situation
 – Each player is rational (knows its payoff, and wishes to maximize it)
 – Each player knows that the other player is rational
 – Each player can derive all consequences of common rationality
Bounded Rationality

- Herbert Simon – “Boundedly rational agents experience limits in formulating and solving complex problems and in processing (receiving, storing, retrieving, transmitting) information”
- In particular, boundedly rational agents are subject to computational constraints
Games

• Simultaneous-move (eg., Prisoner’s Dilemma) or Sequential-move (eg., chess)

• Simultaneous-move
 – Action spaces: A_1, A_2
 – Strategy spaces: $P(A_1), P(A_2)$
 – Payoff functions: $A_1 \times A_2 \rightarrow \mathbb{R}$

• Sequential-move (one-shot)
 – Strategy spaces: $P(A_1), P(A_2)^{^\text{A}_1}$
 – Payoff functions: $A_1 \times A_2 \rightarrow \mathbb{R}$
Nash Equilibrium

• A pair of strategies \((S_1, S_2)\) is an NE if
 – For all \(T_2\), \(u_2(S_1, S_2) \geq u_2(S_1, T_2)\)
 – For all \(T_1\), \(u_1(S_1, S_2) \geq u_1(T_1, S_2)\)

• Theorem [Nash]: Every finite game has an NE
Almost-Nash Equilibrium

• A pair of strategies \((S_1, S_2)\) is a \(\gamma\)-NE if
 – For all \(T_2\), \(u_2(S_1, S_2) \geq u_2(S_1, T_2) - \gamma\)
 – For all \(T_1\), \(u_1(S_1, S_2) \geq u_1(T_1, S_2) - \gamma\)
The Largest Number Game

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
<th>Payoff (to Alice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (Integer)</td>
<td>N (Integer)</td>
<td>100 if $M > N$, 50 if $M = N$, 0 otherwise</td>
</tr>
</tbody>
</table>

Largest Number game does not have an NE, or even an almost-NE if $\gamma < 50$
The Factoring Game (sequential-move)

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
<th>Payoff (to Bob)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (Integer)</td>
<td>X,Y (Integers)</td>
<td>100 if M is prime or if $1 < X,Y < M$ and $M = X \times Y$, 1 otherwise</td>
</tr>
</tbody>
</table>

Factoring Game has infinitely many Nash equilibria, in each of which Bob gets payoff 100 and Alice gets payoff 1 (Bob’s strategy is simply to factor Alice’s number).
Plan of the Talk

• Introduction
• *The Model*
• Results
• Future Directions
Time is Money

- The *time* it takes to implement a strategy is relevant
- Payoffs should decrease with time
- Exponential discounting: Let $\varepsilon < 1$ be a discount factor. Then payoff decreases by a factor $(1-\varepsilon)^t$ after t steps
Asymmetric Discounting

• In general, different players have different discount factors
 – The players might have different roles in the game
 – Even if the game is symmetric, the players themselves might not be equally patient

• ε: Alice’s discount factor

• δ: Bob’s
Discounting and Computational Power

- By “time” we mean *computational time*
- Suppose Alice and Bob are equally patient with respect to real time but Alice’s computer is 100 times as powerful as Bob’s. Then $\delta \sim 100 \, \varepsilon$
- Discount factor is not just an index of patience, but also of computational power
The Discounted Game

• Let $G = (A_1, A_2, u_1, u_2)$ be a game
• The (ε, δ)-discounted version of G has
 – Actions: Probabilistic machines which take as input ε and δ, and output actions in A_1 (resp. A_2)
 – Payoffs: Alice’s payoff corresponding to machines M_1 (Alice) and M_2 (Bob) outputting $a_1 \in A_1$ and $a_2 \in A_2$ resp. is $u_1(a_1,a_2)(1 - \varepsilon)^t$, where t is time taken for M_1 to output a_1
Uniform Equilibria

- A pair of strategies \((S_1, S_2)\) for the discounted game is a uniform NE if neither player can gain in the limit as \(\varepsilon, \delta \to 0\) by playing a different strategy.

- Limit case interesting because
 - \(\varepsilon, \delta\) are typically small
 - As computational power increases, \(\varepsilon\) and \(\delta\) get smaller
Plan of the Talk

• Introduction
• The Model
• Results
• Future Directions
Finite Games

• Theorem: Let G be a finite game. For every NE of G, the discounted version of G has a uniform NE with the same payoffs in the limit.
Infinite Games

• Theorem: Every countable game with bounded computable payoffs has a uniform NE

• Note that such games do not always have an NE or even an almost-NE (e.g., Largest Number Game)
The Largest Number Game, Revisited

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
<th>Payoff (to Alice)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>(N)</td>
<td>100 if (M > N),</td>
</tr>
<tr>
<td>(Integer)</td>
<td>(Integer)</td>
<td>50 if (M = N),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 otherwise</td>
</tr>
</tbody>
</table>

Largest Number game does not have an NE, or even an almost-NE if \(\gamma < 50\)
The Largest Number Game, Revisited

• All the uniform equilibria of Largest Number game yield payoff 0 for both players
• Example: both players play $2^{1/\varepsilon^2 + 1/\delta^2}$
• If more is known about relationship between ε and δ, eg., $\varepsilon \gg \delta$, then there might be other equilibria yielding non-zero payoffs
The Factoring Game, Revisited

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
<th>Payoff (to Bob)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (Integer)</td>
<td>X,Y (Integers)</td>
<td>100 if M is prime or if $1 < X,Y < M$ and $M = X \times Y$, 1 otherwise</td>
</tr>
</tbody>
</table>

Factoring Game has infinitely many Nash equilibria, in each of which Bob gets payoff 100 and Alice gets payoff 1 (Bob’s strategy is simply to factor Alice’s number)
Complexity Through Game Theory

• Tight connection between computational complexity of Factoring and uniform equilibrium payoffs of discounted Factoring game

• Let $\delta = \epsilon^c$, for some $c > 1$, wlog

• Theorem: If Factoring is in time $o(n^c)$ on average, then every uniform NE of discounted game gives payoff 1 to Alice and 100 to Bob
Complexity Through Game Theory

• Theorem: Suppose there is no algorithm which runs in time $n^c \cdot \text{polylog}(n)$ and solves Factoring on average for infinitely many input lengths. Then there is a uniform NE of discounted game giving payoff 100 to Alice and 1 to Bob.

• Proof idea: Consider strategy for Alice of outputting random number of size $\sim 1/\epsilon$. Show that any strategy for Bob yielding payoff more than 1 in the limit yields factoring algorithm
A Spurious Equilibrium

• In the case where Factoring is hard, there is still a uniform NE where Bob wins
• This corresponds to Bob playing a brute-force Factoring algorithm
• However, in practice, we wouldn’t expect this to happen – Bob’s threat is not credible
Plan of the Talk

• Introduction
• The Model
• Results
• *Future Directions*
Future Directions: Refining the Model

• Defining a notion of subgame-perfection for discounted games
• An approach based on preference relations rather than real-number payoffs
• Capture bounded rationality not just in implementation but also in design
Future Directions: Applications of the Model

- Using discounting in choice situations ("flexible" or "anytime" algorithms)
- Perspective on foundations of cryptography, where protocol is treated as a game and adversary is modelled as bounded-rational
- Bounded rationality in extensive-form games